

Equations & Common Calculations	Identifier: Revisions:	BPR - 0004 0
	Page:	1 of 3

ISU Biological Sciences	Stockroom Procedure	Effective Date:03/19/2021
-------------------------	---------------------	---------------------------

1. Equations

1.1 **Molarity:** the amount of a substance in a certain volume of solution, moles of a solute per liters of a solution

M = -

moles of solute

liters of solution

1M = formula weight per liter (g/L)

Molar Mass = (g/mol)

EX. Prepare 600 mL of 0.4 M sucrose

Step 1. Find formula weight on the chemical bottle – F.W of sucrose is 342.3 g/mol

Step 2. Set up conversions, write out unit labels, and solve by cancelling units

Molar Mass x Molarity x Amount needed 342.3 g sucrose x $\frac{0.4 \text{ mol}}{1 \text{ k}}$ x $\frac{0.6 \text{ k}}{1 \text{ k}}$ = 82.2 g sucrose

Add 82.2 grams of sucrose to 600 mL or 0.6 L of DH_2O

1.2 Dilutions: decrease the concentration of a solute in a solution

 $C_1 \times V_1 = C_2 \times V_2$ OR $M_1 \times V_1 = M_2 \times V_2$

 C_1 is the initial (stock) concentration (molarity) V_1 is the initial (stock) volume taken C_2 is the concentration (molarity) of the dilution V_2 is the final volume of the dilution

	Identifier:	BPR - 0004
Equations & Common Calculations	Revisions :	0
	Page:	2 of 3

ISU Biological Sciences Stockroom Procedure Effective Date: 03	ogical Sciences	Effective Date: 03/19/2021
--	-----------------	----------------------------

1.3 Percent Solutions: amount or volume of chemical or compound per 100 mL of a solution

(Weight/Volume) = g per 100 mL of solvent

(Volume/volume) = mL per 100 mL of solvent

EX. Prepare a 5% NaHCO₃ (sodium bicarbonate) solution with a total volume of 500 mL

5% > 5g / 100 mL (w/v)

 $\frac{5 \text{ g NaHCO_3}}{100 \text{ mL DH}_2\text{O}} \times 500 \text{ mL} = 25 \text{ g NaHCO_3}$

Add 25 g of sodium bicarbonate to 500 mL of DH_2O

	Identifier:	BPR - 0004
Equations & Common Calculations	Revisions:	0
	Page:	3 of 3

ISU Biological Sciences	Stockroom Procedure	Effective Date: 03/19/2021
-------------------------	---------------------	----------------------------

2. Common Calculations

2.1. CiDecon Disinfectant (1:128)

- 2.1.1. Prepare 3 gallons using the conversion 1 oz. concentrated CiDecon to 1 gallon DH₂O
- 2.1.2. Fill gray spray bottles ¾ full and cap
- 2.1.3. Replace bi-weekly on Fridays in rooms 138, 139, 151, 152, 153, 243

2.2. Amphyl Disinfectant (1:200) or 1/2%

- 2.2.1. Prepare using the conversion table below
- 2.2.2. Pipette jars hold 6 liters (1.58 gallons) add 31.6 mL Amphyl to 6 L DH_2O
 - 2.2.2.1. 51 mL isopropyl alcohol/15 mL Amphyl can be added to maintain clarity if solution will not be used right away
 - 2.2.2.2. Use proper PPE gloves, lab coat, and safety glasses
- 2.2.3. Refill once a semester

Dillution Strength	Amphyl	DH ₂ O
(1:200)	5 mL	1 quart / 946.3 mL
(1:200)	20 mL	1 gallon / 3.785 L

2.3. Liquid Descaler / Acid Bath (1:124)

- 2.3.1. Prepare acid bath by using the conversion 8 mL descaler concentrate to 1 L DH₂O
- 2.3.2. Use to soak glassware after decontamination, clean dishwasher, and clear rust
 - 2.3.2.1. Use proper PPE gloves, lab coat, and safety glasses

2.4. Ethanol Dilutions from 190 proof / 95% ETOH

2.4.1. Use $M_1 \times V_1 = M_2 \times V_2$

- 2.4.1.1. M_1 = the concentration of ethanol you want to prepare, ex. 70 %
- 2.4.1.2. V_1 = volume of ethanol you want to prepare
- 2.4.1.3. M_2 = the concentration of stock ethanol, 95 % or 190 proof
- 2.4.1.4. V_2 = volume of stock ethanol, 95 % or 190 proof
- 2.4.1.5. Solve for V_2 , subtract V2 from the total volume needed to determine final DH_2O volume