Biology Department Stockroom

Equations \& Common Calculations	Identifier:	BPR -0004
	Revisions:	0
	1 of 3	

ISU Biological Sciences	Stockroom Procedure	Effective Date:03/19/2021

1. Equations

1.1 Molarity: the amount of a substance in a certain volume of solution, moles of a solute per liters of a solution
$1 \mathrm{M}=$ formula weight per liter $(\mathrm{g} / \mathrm{L})$
$M=\frac{\text { moles of solute }}{\text { liters of solution }}$
Molar Mass = (g/mol)

EX. Prepare 600 mL of 0.4 M sucrose

Step 1. Find formula weight on the chemical bottle - F.W of sucrose is $342.3 \mathrm{~g} / \mathrm{mol}$
Step 2. Set up conversions, write out unit labels, and solve by cancelling units
Molar Mass x Molarity x Amount needed

Add 82.2 grams of sucrose to 600 mL or 0.6 L of $\mathrm{DH}_{2} \mathrm{O}$
1.2 Dilutions: decrease the concentration of a solute in a solution

$$
C_{1} \times V_{1}=C_{2} \times V_{2} \quad O R \quad M_{1} \times V_{1}=M_{2} \times V_{2}
$$

C_{1} is the initial (stock) concentration (molarity)
\mathbf{V}_{1} is the initial (stock) volume taken
$\mathbf{C}_{\mathbf{2}}$ is the concentration (molarity) of the dilution $\quad \mathbf{V}_{\mathbf{2}}$ is the final volume of the dilution

Biology Department Stockroom

Equations \& Common Calculations	Identifier:	BPR - 0004
	Revisions:	$\mathbf{0}$
	Page:	$\mathbf{2}$ of 3

ISU Biological Sciences \quad Stockroom Procedure \quad Effective Date: 03/19/2021
1.3 Percent Solutions: amount or volume of chemical or compound per 100 mL of a solution
(Weight/Volume) $=$ g per 100 mL of solvent
(Volume/volume) $=\mathrm{mL}$ per 100 mL of solvent

EX. Prepare a $5 \% \mathrm{NaHCO}_{3}$ (sodium bicarbonate) solution with a total volume of 500 mL $5 \%>5 \mathrm{~g} / 100 \mathrm{~mL}(\mathrm{w} / \mathrm{v})$

$$
\frac{5 \mathrm{~g} \mathrm{NaHCO}_{3}}{100 \mathrm{mLDH}_{2} \mathrm{O}} \times 500 \mathrm{~mL}=25 \mathrm{~g} \mathrm{NaHCO}_{3}
$$

Add 25 g of sodium bicarbonate to 500 mL of $\mathrm{DH}_{2} \mathrm{O}$

Biology Department Stockroom

Equations \& Common Calculations	Identifier: Revisions:	BPR - 0004
	0	
	Page:	3 of

ISU Biological Sciences	Stockroom Procedure	Effective Date: 03/19/2021

2. Common Calculations

2.1. CiDecon Disinfectant (1:128)

2.1.1. Prepare 3 gallons using the conversion 1 oz. concentrated CiDecon to 1 gallon $\mathrm{DH}_{2} \mathrm{O}$
2.1.2. Fill gray spray bottles $3 / 4$ full and cap
2.1.3. Replace bi-weekly on Fridays in rooms 138, 139, 151, 152, 153, 243
2.2. Amphyl Disinfectant (1:200) or $1 / 2 \%$
2.2.1. Prepare using the conversion table below
2.2.2. Pipette jars hold 6 liters (1.58 gallons) - add 31.6 mL Amphyl to 6 L DH2O
2.2.2.1. $\quad 51 \mathrm{~mL}$ isopropyl alcohol $/ 15 \mathrm{~mL}$ Amphyl can be added to maintain clarity if solution will not be used right away
2.2.2.2. Use proper PPE - gloves, lab coat, and safety glasses
2.2.3. Refill once a semester

Dillution Strength	Amphyl	$\mathbf{D H}_{\mathbf{2}} \mathbf{O}$
$(1: 200)$	5 mL	1 quart 946.3 mL
$(1: 200)$	20 mL	1 gallon $/ 3.785 \mathrm{~L}$

2.3. Liquid Descaler / Acid Bath (1:124)
2.3.1. Prepare acid bath by using the conversion 8 mL descaler concentrate to $1 \mathrm{LDH} \mathrm{DH}_{2}$
2.3.2. Use to soak glassware after decontamination, clean dishwasher, and clear rust
2.3.2.1. Use proper PPE - gloves, lab coat, and safety glasses
2.4. Ethanol Dilutions from 190 proof / $95 \% \mathrm{ETOH}$
2.4.1. Use $M_{1} \times V_{1}=M_{2} \times V_{2}$
2.4.1.1. $\quad \mathrm{M}_{1}=$ the concentration of ethanol you want to prepare, ex. 70%
2.4.1.2. $\quad \mathrm{V}_{1}=$ volume of ethanol you want to prepare
2.4.1.3. $\quad \mathrm{M}_{2}=$ the concentration of stock ethanol, 95% or 190 proof
2.4.1.4. $\quad \mathrm{V}_{2}=$ volume of stock ethanol, 95% or 190 proof
2.4.1.5. Solve for V_{2}, subtract V 2 from the total volume needed to determine final $\mathrm{DH}_{2} \mathrm{O}$ volume

